सभी प्राचीन सभ्यताओं में गणित विद्या की पहली अभिव्यक्ति गणना प्रणाली के रूप में प्रगट होती है। अति प्रारंभिक समाजों में संख्यायें रेखाओं के समूह द्वारा प्रदर्शित की जातीं थीं। यद्यपि बाद में, विभिन्न संख्याओं को विशिष्ट संख्यात्मक नामों और चिह्नों द्वारा प्रदर्शित किया जाने लगा, उदाहरण स्वरूप भारत में ऐसा किया गया। रोम जैसे स्थानों में उन्हें वर्णमाला के अक्षरों द्वारा प्रदर्शित किया गया। यद्यपि आज हम अपनी दशमलव प्रणाली के अभ्यस्त हो चुके हैं, किंतु सभी प्राचीन सभ्यताओं में संख्याएं दशमाधार प्रणाली पर आधारित नहीं थीं। प्राचीन बेबीलोन में 60 पर आधारित प्रणाली का प्रचलन था।

हरप्पा में दशमलव प्रणाली

भारत में दशमलव प्रणाली हरप्पाकाल में अस्तित्व में थी जैसा कि हरप्पा के बाटों और मापों के विश्लेषण से पता चलता है। उस काल के 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200 और 500 के अनुपात वाले बाट पहचान में आये हैं। दशमलव विभाजन वाले पैमाने भी मिले हैं। हरप्पा के बाट और माप की एक खास बात जिस पर ध्यान आकर्षित होता है, वह है उनकी शुद्धता। एक कांसे की छड़ जिस पर 0.367 इंच की इकाइयों में घाट बने हुए हैं, उस समय की बारीकी की मात्रा की मांग की ओर इशारा करता है। ऐसे शुद्ध माप वाले पैमाने नगर आयोजन नियमों के अनुपालन सुनिश्चित करने के लिए खास तौर पर महत्वपूर्ण थे क्योंकि एक दूसरे को समकोण पर काटती हुई निश्चित चैड़ाई की सड़कें तथा शुद्ध माप की निकास बनाने हेतु और विशेष निर्देशों के अनुसार भवन निर्माण के लिए उनका विशेष महत्व था। शुद्ध माप वाले बाटों की श्रृखंलाबद्ध प्रणाली का अस्तित्व हरप्पा के समाज में व्यापार वाणिज्य में हुए विकास की ओर इशारा करता है।

वैदिक काल में गणितीय गतिविधियां

वैदिक काल में गणितीय गतिविधियां के अभिलेख वेदों में अधिकतर धार्मिक कर्मकांडों के साथ मिलते हैं। फिर भी, अन्य कई कृषि आधारित प्राचीन सभ्यताओं की तरह यहां भी अंकगणित और ज्यामिति का अध्ययन धर्मनिरपेक्ष क्रियाकलापों से भी प्रेरित था। इस प्रकार कुछ हद तक भारत में प्राचीन गणितीय उन्नतियां वैसे ही विकसित हुईं जैसे मिस्त्रा, बेबीलोन और चीन में। भू-वितरण प्रणाली और कृषि कर के आकलन हेतु कृषि क्षेत्रा को शुद्ध माप की आवश्यकता थी। जब जमीन का पुनर्वितरण होता था, उनकी चकबंदी होती थी तो भू पैमाइश की समस्या आती ही थी जिसका समाधान जरूरी था और यह सुनिश्चित करने के लिए कि सिंचित और असिंचित जमीन और उर्वरा शक्ति की भिन्नता को ध्यान में रखकर सभी खेतिहरों में जमीन का समतुल्य वितरण हो सके, हर गांव के किसान की मिल्कियत को कई दर्जों में विभाजित किया जाता था ताकि जमीन का आबंटन न्यायपूर्ण हो सके। सारे चक एक ही आकार के हों, यह संभव नहीं था। अतः स्थानीय प्रशासकों को आयातकार या त्रिभुजाकार क्षेत्रों को समतुल्य परिमाण के वर्गाकार क्षेत्रों में परिणत करना पड़ता था या इसी प्रकार के और काम करने पड़ते थे। कर निर्धारण मौसमी या वार्षिक फसल की आय के निश्चित अनुपात पर आधारित था। मगर कई अन्य दशाओं को ध्यान में रखकर उन्हें कम या अधिक किया जा सकता था। इसका अर्थ था कि लगान वसूलने वाले प्रशासकों के लिए ज्यामिति और अंकगणित का ज्ञान जरूरी था। इस प्रकार गणित धर्म निरपेक्ष गतिविधि और कर्मकांड दोनों क्षेत्रों की सेवाओं में उपयोगी था।

अंकगणितीय क्रियायें जैसे योग, घटाना, गुणन, भाग, वर्ग, घन और मूल नारद विष्णु पुराण में वर्णित हैं। इसके प्रणेता वेद व्यास माने जाते हैं जो 1000 ई. पू. हुए थे। ज्यामिति /रेखा गणित/ विद्या के उदाहरण 800 ई. पू. में बौधायन के शुल्व सूत्रा में और 600 ई. पू. के आपस्तम्ब सूत्रा में मिलते हैं जो वैदिककाल में प्रयुक्त कर्मकाण्डीय बलि वेदी के निर्माण की तकनीक का वर्णन करते हैं। हो सकता है कि इन ग्रंथों ने पूर्वकाल में, संभवतया हरप्पाकाल में अर्जित ज्यामितीय ज्ञान का उपयोग किया हो। बौधायन सूत्रा बुनियादी ज्यामितीय आकारों के बारे तथा एक ज्यामितीय आकार दूसरे समक्षेत्राीय आकार में या उसके अंश या उसके गुणित में परिणत करने की जानकारी प्रदर्शित करता है उदाहरण के लिए एक आयत को एक समक्षेत्राीय वर्ग के रूप में अथवा उसके अंश या गुणित में परिणत करने का तरीका। इन सूत्रों में से कुछ तो निकटतम मान तक ले जाते हैं और कुछ एकदम शुद्ध मान बतलाते हैं तथा कुछ हद तक व्यवहारिक सूक्ष्मता और बुनियादी ज्यामितीय सिद्धांतों की समझ प्रगट करते हैं। गुणन और योग के आधुनिक तरीके संभवतः शुल्व सू़त्रा वर्णित गुरों से ही उद्भूत हुए थे।

यूनानी गणितज्ञ और दार्शनिक पायथागोरस जो 6 वीं सदी ई. पू. में हुआ था उपनिषदों से परिचित था और उसने अपनी बुनियादी ज्यामिति शुल्व सूत्रों से ही सीखी थी। पायथागोरस के प्रमेय के नाम से प्रसिद्ध प्रमेय का पूर्ण विवरण बौधायन सू़त्रा में इस प्रकार मिलता हैः किसी वर्ग के विकर्ण पर बने हुए वर्ग का क्षेत्राफल उस वर्ग के क्षेत्राफल का दुगुना होता है। आयतों से संबंधित ऐसा ही एक परीक्षण भी उल्लेखनीय है। उसके सूत्रा में एक अज्ञात राशि वाले एक रेखीय समीकरण का भी ज्यामितीय हल मिलता है। उसमें द्विघात समीकरण के उदाहरण भी हैं। आपस्तम्ब सूत्रा जिसमें बौधायन सूत्रा के विस्तार के साथ कई मौलिक योगदान भी हैं 2 का वर्गमूल बतलाता है जो दशमलव के बाद पांचवें स्थान तक शुद्ध है। आपस्तम्ब में वृत्त को एक वर्ग में घेरने, किसी रेखा खंड को सात बराबर भाग में बांटने और सामान्य रेखिक समीकरण का हल निकालने जैसे प्रश्नों पर भी विचार किया गया है। छटवीं सदी ई. पू. के जैन ग्रंथों जैसे सूर्य प्रज्ञाप्ति में दीर्घ वृत्त का विवरण दिया गया है।

ये परिणाम कैसे निकाले गए इस विषय पर आधुनिक विद्वानों में मतभेद हैं। कुछ का विश्वास है कि ये परिणाम अटकल विधि अथवा रूल आॅफ थंब अथवा कई उदाहरणों से प्राप्त नतीजों के साधारणीकरण से निकाले गए हैं। दूसरा मत यह है कि एकबार वैज्ञानिक विधि न्यायसूत्रों से निश्चित हो गई – ऐसे नतीजों के प्रमाण अवश्य दिए गए होंगे, मगर ये प्रमाण खो गए या नष्ट हो गए अथवा गुरुकुल प्रणाली के जरिये मौखिक रूप से उनका प्रसार हो गया और केवल अंतिम परिणाम ही ग्रंथों में सारिणीबद्ध हो गये। हर हाल में यह तो निश्चित है कि वैदिक काल में गणित के अध्ययन को काफी महत्व दिया जाता था। 1000 ई. पू. में रचित वेदांग ज्योतिष में लिखा है – जैसे मयूर पंख और नागमणि शरीर में शिखर स्थान या भाल पर शोभित होती है उसी प्रकार वेदों और शास्त्रों की सभी शाखाओं में गणित का स्थान शीर्ष पर है। कई शताब्दियों बाद मैसूर के जैन गणितज्ञ महावीराचार्य ने गणित के महत्व पर और जोर देते हुए कहाः इस चलाचल जगत में जो भी वस्तु विद्यमान है वह बिना गणित के आधार के नहीं समझी जा सकती।

पाणिनि और विधि सम्मत वैज्ञानिक संकेत चिन्ह

भारतीय विज्ञान के इतिहास में एक विशेष प्रगति, जिसका गंभीर प्रभाव सभी परवर्ती गणितीय ग्रंथों पर पड़ना था, संस्कृत व्याकरण और भाषा विज्ञान के प्रणेता पाणिनि द्वारा किया गया काम था। ध्वनिशास्त्रा और संरचना विज्ञान पर एक विशद और वैज्ञानिक सिद्धांत पूरी व्याख्या के साथ प्रस्तुत करते हुए पाणिनि ने अपने संस्कृत व्याकरण के ग्रंथ अष्टाध्यायी में विधि सम्मत शब्द उत्पादन के नियम और परिभाषाएं प्रस्तुत कीं। बुनियादी तत्वों जैसे स्वर, व्यंजन, शब्दों के भेद जैसे संज्ञा और सर्वनाम आदि को वर्गीकृत किया गया। संयुक्त शब्दों और वाक्यों के विन्यास की श्रेणीबद्ध नियमों के जरिये उसी प्रकार व्याख्या की गई जैसे विधि सम्मत भाषा सिद्धांत में की जाती है।
आज पाणिनि के विन्यासों को किसी गणितीय क्रिया की आधुनिक परिभाषाओं की तुलना में भी देखा जा सकता है। जी. जी. जोसेफ ’’दी क्रेस्ट आॅफ दा पीकाॅक’’ में विवेचना करते हैं कि भारतीय गणित की बीजगणितीय प्रकृति संस्कृत भाषा की संरचना की परिणति है। इंगरमेन ने अपने शोध प्रबंध में ’’पाणिनि – बैकस फार्म’’ में पाणिनि के संकेत चिन्हों को उतना ही प्रबल बतलाया है जितना कि बैकस के संकेत चिह्न। बैकस नार्मल फार्म आधुनिक कम्प्युटर भाषाओं के वाक्यविन्यास का वर्णन करने के लिए व्यवहृत होता है जिसका अविष्कारकत्र्ता बैकस है। इस प्रकार पाणिनि के कार्यों ने वैज्ञानिक संकेत चिन्हों के प्रादर्श का एक उदाहरण प्रस्तुत किया जिसने बीजगणितीय समीकरणों को वर्णित करने और बीजगणितीय प्रमेयों और उनके फलों को एक वैज्ञानिक खाके में प्रस्तुत करने के लिए अमूर्त संकेत चिह्न प्रयोग में लाने के लिए प्रेरित किया होगा।

दर्शनशास्त्र और गणित

दार्शनिक सिद्धांतों का गणितीय परिकल्पनाओं और सूत्राीय पदों के विकास पर गहरा प्रभाव पड़ा। विश्व के बारे में उपनिषदों के दृष्टिकोण की भांति जैन दर्शन में भी आकाश और समय असीम माने गये। इससे बहुत बड़ी संख्याओं और अपरिमित संख्ययओं की परिभाषाओं में गहरी रुचि पैदा हुई। रीकरसिव /वापिस आ जाने वाला/ सूत्रों के जरिये असीम संख्यायें बनाईं गईं। अणुयोगद्वार सूत्रा में ऐसा ही किया गया। जैन गणितज्ञों ने पांच प्रकार की असीम संख्यायें बतलाईंः 1. एक दिशा में असीम, 2. दो दिशाओं में असीम, 3. क्षेत्रा में असीम, 4. सर्वत्रा असीम और 5. सतत असीम। 3 री सदी ई. पू. में रचित भागवती सूत्रों में और 2 री सदी ई. पू. में रचित साधनांग सूत्रा में क्रमपरिवर्तन और संयोजन को सूचीबद्ध किया गया है।

जैन समुच्चय सिद्धांत संभवतः जैन ज्ञान मीमांसा के स्यादवाद के समानान्तर ही उद्भूत हुआ जिसमें वास्तविकता को सत्य की दशा.युगलों और अवस्था.परिवर्तन युगलों के रूप में वर्णित किया गया है। अणुयोग द्वार सूत्रा घातांक नियम के बारे में एक विचार देता है और इसे लघुगणक की संकल्पना विकसित करने के लिए उपयोग में लाता है। लाग आधार 2, लाग आधार 3 और लाग आधार 4 के लिए क्रमशः अर्ध आछेद, त्रिक आछेद और चतुराछेद जैसे शब्द प्रयुक्त किए गये हैं। सत्खंडागम में कई समुच्चयांे पर लागरिथमिक फंक्शन्स आधार 2 की क्रिया, उनका वर्ग निकालकर, उनका वर्गमूल निकालकर और सीमित या असीमित घात लगाकर की गई हैं। इन क्रियाओं को बार बार दुहराकर नये समुच्चय बनाये गये हैं। अन्य कृतियों में द्विपद प्रसार में आने वाले गुणकों का संयोजनों की संख्या से संबंध दिखाया गया है। चंूकि जैन ज्ञान मीमांसा में वास्तविकता का वर्णन करते समय कुछ अंश तक अनिश्चयता स्वीकार्य है। अतः अनिश्चयात्मक समीकरणों से जूझने में और अपरिमेय संख्याओं का निकटतम संख्यात्मक मान निकालने में वह संभवतया सहायक हुई।

बौद्ध साहित्य भी अनिश्चयात्मक और असीम संख्याओं के प्रति जागरूकता प्रदर्शित करता है। बौद्ध गणित का वर्गीकरण गणना याने सरल गणित या सांख्यन याने उच्चतर गणित में हुआ। संख्यायें तीन प्रकार की मानी गईंः सांखेय याने गिनने योग्य, असांखेय याने अगण्य और अनन्त याने असीम। अंक शून्य की परिकल्पना प्रस्तुत करने में, शून्य के संबंध में दार्शनिक विचारों ने मदद की होगी। ऐसा लगता है कि स्थानीय मान वाली सांख्यिक प्रणाली में सिफर याने बिन्दु का एक खाली स्थान में लिखने का चलन बहुत पहले से चल रहा होगा, पर शून्य की बीजगणितीय परिभाषा और गणितीय क्रिया से इसका संबंध 7 वीं सदी में ब्रह्मगुप्त के गणितीय ग्रंथों में ही देखने को मिलता है। विद्वानों में इस मसले पर मतभेद है कि शून्य के लिए संकेत चिन्ह भारत में कबसे प्रयुक्त होना शुरू हुआ। इफरा का दृढ़ विश्वास है कि शून्य का प्रयोग आर्यभट्ट के समय में भी प्रचलित था। परंतु गुप्तकाल के अंतिम समय में शून्य का उपयोग बहुतायत से होने लगा था। 7 वीं और 11 वीं सदी के बीच में भारतीय अंक अपने आधुनिक रूप में विकसित हो चुके थे और विभिन्न गणितीय क्रियाओं को दर्शाने वाले संकेतों जैसे धन, ऋण, वर्गमूल आदि के साथ आधुनिक गणितीय संकेत चिन्हों के नींव के पत्थर बन गए।
भारतीय अंक प्रणाली

यद्यपि चीन में भी दशमलव आधारित गणना पद्धति प्रयोग में थी, किन्तु उनकी संकेत प्रणाली भारतीय संकेत चिन्ह प्रणाली जितनी शुद्ध और सरल न थी और यह भारतीय संकेत प्रणाली ही थी जो अरबों के मार्फत पश्चिमी दुनियां में पहुंची और अब वह सार्वभौमिक रूप में स्वीकृत हो चुकी है। इस घटना में कई कारकों ने अपना योगदान दिया जिसका महत्व संभवतः सबसे अच्छे ढंग से फ्रांसीसी गणितज्ञ लाप्लेस ने बताया हैः ’’हर संभव संख्या को दस संकेतों के समुच्चय द्वारा प्रकट करने की अनोखी विधि जिसमें हर संकेत का एक स्थानीय मान और एक परम मान हो, भारत में ही उद्भूत हुई। यह विधि आजकल इतनी सरल लगती है कि इसके गंभीर और प्रभावशाली महत्व पर ध्यान ही नहीं जाता। इसने अपनी सरल विधि द्वारा गणना को अत्याधिक आसान बना दिया और अंकगणित को उपयोगी अविष्कारों की श्रेणी में अग्रगण्य बना दिया।’’

यह अविष्कार प्रतिभाशाली तो था परंतु यह कोई अचानक नहीं हुआ था। पश्चिमी जगत में जटिल रोमन अंकीय प्रणाली एक बड़ी बाधा के रूप में प्रगट हुई और चीन की चित्रालिपि भी एक रुकावट थी। लेकिन भारत में ऐसे विकास के लिए सब कुछ अनुकूल था। दशमलव संख्याओं के प्रयोग का एक लम्बा और स्थापित इतिहास था ही, दार्शनिक और अंतरिक्षीय परिकल्पनाओं ने भी, संख्या सिद्धांत के प्रति एक रचनात्मक विस्तृत दृष्टिकोण को बढ़ावा दिया। पाणिनि के भाषा सिद्धांत और विधि सम्मत भाषा के अध्ययन और संकेतवाद तथा कला और वास्तुशास्त्रा में प्रतिनिधित्वात्मक भाव के साथ साथ विवेकवादी सिद्धांत और न्याय सूत्रों की कठिन ज्ञान मीमांसा और स्याद्वाद तथा बौद्ध ज्ञान के नवीनतम भाव ने मिलकर इस अंक सिद्धांत को आगे बढ़ाने में मदद की।

व्यापार और वाणिज्य का प्रभाव, नक्षत्रा-विद्या का महत्व

व्यापार और वाणिज्य में वृद्धि के फलस्वरूप, विशषरूप से ऋण लेने देने में, साधारण और चक्रवृद्धि ब्याज के ज्ञान की जरूरत पड़ी। संभवतः इसने अंकगणितीय और ज्यामितीय श्रेढियों में रुचि को उद्दीप्त किया। ब्रह्मगुप्त द्वारा ऋणात्मक संख्याओं को कर्ज के रूप में और धनात्मक संख्याओं को सम्पत्ति के रूप में वर्णित करना, व्यापार और गणित के बीच संबंध की ओर इशारा करता है। गणित.ज्योतिष का ज्ञान.विशेषकर ज्वारभाटे और नक्षत्रों का ज्ञान व्यापारी समुदायों के लिए बड़ा महत्व रखता था क्योंकि उन्हें रात में रेगिस्तानों और महासागरों को पार करना पड़ता था। जातक कथाओं और कई अन्य लोक कथाओं में इनका बार बार जिक्र आना इसी बात का द्योतक है। वाणिज्य के लिए दूर जाने की इच्छा रखने वालों को अनिवार्य रूप से नक्षत्रा विद्या में कुछ आधारभूत जानकारी लेनी पड़ती थी। इससे इस विद्या के शिक्षकों की संख्या काफी बढ़ी जिन्होंने बिहार के कुसुमपुर या मध्य भारत के उज्जैन अथवा अपेक्षाकृत छोटे स्थानीय कंेद्रों या गुरूकुलों में प्रशिक्षण प्राप्त किया। विद्वानों में गणित और नक्षत्रा विद्या की पुस्तकों का विनिमय भी हुआ और इस ज्ञान का एक क्षेत्रा से दूसरे क्षेत्रा में प्रसार हुआ। लगभग हर भारतीय राज्य ने महान गणितज्ञों को जन्म दिया जिन्होंने कई सदियों पूर्व भारत के अन्य भाग में उत्पन्न गणितज्ञों की कृतियों की समीक्षा की। विज्ञान के संचार में संस्कृत ही जन माध्यम बनी थी।

बीज रोपण समय और फसलों का चुनाव निश्चित करने के लिए आवश्यक था कि जलवायु और वृष्टि की रूपरेखा की जानकारी बेहतर हो। इन आवश्यकताओं और शुद्ध पंचांग की आवश्यकता ने ज्योतिष विज्ञान के घोड़े को ऐड़ लगा दी। इसी समय धर्म और फलित ज्योतिष ने भी ज्योतिष विज्ञान में रुचि पैदा करने में योगदान दिया और इस अविवेकी प्रभाव का एक नकारात्मक नतीजा था, अपने समय से बहुत आगे चलने वाले वैज्ञानिक सिद्धांतों की अस्वीकृति। गुप्तकाल के एक बड़े विज्ञानवेत्ता, आर्यभट ने जो 476 ई. में बिहार के कुसुमपुर में जन्मे थे, अंतरिक्ष में ग्रहों की स्थिति के बारे में एक सुव्यवस्थित व्याख्या दी थी। पृथ्वी के अपने अक्ष पर घूर्णन के बारे में उनकी परिकल्पना सही थी तथा ग्रहों की कक्षा दीर्घवृताकार है उनका यह निष्कर्ष भी सही था। उन्होंने यह भी उचित ढंग से सिद्ध किया था कि चंद्रमा और अन्य ग्रह सूर्य प्रकाश के परावर्तन से प्रकाशित होते थे। उन्होंने सूर्य ग्रहण और चंद्र ग्रहण से संबंधित सभी अंधविश्वासों और पौराणिक मान्यताओं को नकारते हुए इन घटनाओं की उचित व्याख्या की थी। यद्यपि भास्कर प्रथम, जन्म 6 वीं सदी, सौराष्ट्र् में, और अश्मक विज्ञान विद्यालय, निजामाबाद, आंध्र के विद्यार्थी, ने उनकी प्रतिभा को और उनके वैज्ञानिक योगदान के असीम महत्व को पहचाना। उनके बाद आने वाले कुछ ज्योतिषियांे ने पृथ्वी को अचल मानते हुए, ग्रहणों के बारे में उनकी बौद्धिक व्याख्याओं को नकार दिया। लेकिन इन विपरीतताओं के होते हुए भी आर्यभट का गंभीर प्रभाव परवर्ती ज्योतिर्विदों और गणितज्ञों पर बना रहा जो उनके अनुयायी थे, विशेषकर अश्मक विद्यालय के विद्वानों पर।

सौरमंडल के संबंध में आर्यभट का क्रांतिकारी ज्ञान विकसित होने में गणित का योगदान जीवंत था। पाइ का मान, पृथ्वी का घेरा /62832 मील/ और सौर वर्ष की लम्बाई, आधुनिक गणना से 12 मिनट से कम अंतर और उनके द्वारा की गईं कुछ गणनायें थीं जो शुद्ध मान के काफी निकट थीं। इन गणनाओं के समय आर्यभट को कुछ ऐसे गणितीय प्रश्न हल करने पड़े जिन्हें बीजगणित और त्रिकोणमिति में भी पहले कभी नहीं किया गया था।

आर्यभट के अधूरे कार्य को भास्कर प्रथम ने सम्हाला और ग्रहों के देशांतर, ग्रहों के परस्पर तथा प्रकाशमान नक्षत्रों से संबंध, ग्रहों का उदय और अस्त होना तथा चंद्रकला जैसे विषयों की विशद विवेचना की। इन अध्ययनों के लिए और अधिक विकसित गणित की आवश्यकता थी। अतः भास्कर ने आर्यभट द्वारा प्रणीत त्रिकोणमितीय समीकरणों को विस्तृत किया तथा आर्यभट की तरह इस सही निष्कर्ष पर पहुंचे कि पाइ एक अपरिमेय संख्या है। उसका सर्वाधिक महत्वपूर्ण योगदान है – ज्या फलन की गणना जो 11 प्रतिशत तक शुद्ध है। उन्होंने इंडिटर्मिनेट समीकरणों पर भी मौलिक कार्य किया जो उसके पहले किसी ने नहीं किया और सर्वप्रथम ऐसे चतुर्भुजों की विवेचना की जिनकी चारों भुजायें असमान थीं और उनमें आमने सामने की भुजायें समानान्तर नहीं थीं।

ऐसा ही एक दूसरा महत्वपूर्ण ज्योतिर्विद गणितज्ञ वाराहमिहिर उज्जैन में 6 वीं सदी में हुआ था जिसने गणित ज्योतिष पर पूर्व लिखित पुस्तकों को एक साथ लिपिबद्ध किया और आर्यभट्ट के त्रिकोणमितीय सूत्रों का भंडार बढ़ाया। क्रमपरिवर्तन और संयोजन पर उसकी कृतियों ने जैन गणितज्ञों की इस विषय पर उपलब्धियों को परिपूर्ण किया और दबत मान निकालने की एक विधि दी जो अत्याधुनिक ’’पास्कल के त्रिभुज’’ के बहुत सदृश है। 7 वीं सदी में ब्रह्मगुप्त ने बीजगणित के मूल सिद्धांतों को सूचीबद्ध करने का महत्वपूर्ण काम किया। शून्य के बीजगणितीय गुणों की सूचि बनाने के साथ साथ उसने ऋणात्मक संख्याओं के बीजगणितीय गुणों की भी सूची बनाई। क्वाड्र्ैटिक इनडिटरमिनेट समीकरणों का हल निकालने संबंधी उसके कार्य आयलर और लैग्रेंज के कार्यों का पूर्वाभास प्रदान करते हैं।

कालक्युलस का आविर्भाव

चंद्र ग्रहण का एक सटीक मानचित्रा विकसित करने के दौरान आर्यभट्ट को इनफाइनाटसिमल की परिकल्पना प्रस्तुत करना पड़ी, अर्थात् चंद्रमा की अति सूक्ष्म कालीन या लगभग तात्कालिक गति को समझने के लिए असीमित रूप से सूक्ष्म संख्याओं की परिकल्पना करके उसने उसे एक मौलिक डिफरेेेंशल समीकरण के रूप में प्रस्तुत किया। आर्यभट के समीकरणों की 10 वीं सदी में मंजुला ने और 12 वीं सदी में भास्कराचार्य ने विस्तार पूर्वक व्याख्या की। भास्कराचार्य ने ज्या फलन के डिफरेंशल का मान निकाला। परवर्ती गणितज्ञों ने इंटिग्रेशन की अपनी विलक्षण समझ का उपयोग करके वक्र तलों के क्षेत्राफल और वक्र तलां द्वारा घिरे आयतन का मान निकाला।

व्यावहारिक गणित, व्यावहारिक प्रश्नों के हल

इस काल में व्यावहारिक गणित में भी विकास हुआ – त्रिकोणमितीय सारिणी और माप की इकाइयां बनाई गईं। यतिबृषभ की कृति तिलोयपन्नति 6 वीं सदी में तैयार हुई जिसमें समय और दूरी की माप के लिए विभिन्न इकाइयां दीं गईं हैं और असीमित समय की माप की प्रणाली भी बताई गई है।

9 वीं सदी में मैसूर के महावीराचार्य ने ’’गणित सार संग्रह’’ लिखा जिसमें उन्होंने लघुत्तम समापवत्र्य निकालने के प्रचलित तरीके का वर्णन किया है। उन्होंने दीर्घवृत्त के अंदर निर्मित चतुर्भुज का क्षेत्राफल निकालने का सूत्रा भी निकाला /इस पर ब्रह्मगुप्त ने भी काम किया था।/ इनडिटर्मिनेट समीकरणों का हल निकालने की समस्या पर भी 9 वीं सदी में काफी रुचि दिखलाई दी। कई गणितज्ञों ने विभिन्न प्रकार के इंडिटर्मिनेट समीकरणों का हल निकालने और निकटतम मान निकालने के बारे में योगदान दिया।

9 वीं सदी के उत्तरार्ध में श्रीधर ने जो संभवतया बंगाल के थे, नाना प्रकार के व्यवहारिक प्रश्नों जैसे अनुपात, विनिमय, साधारण ब्याज, मिश्रण, क्रय और विक्रय, गति की दर, वेतन और हौज भरना इत्यादि के लिए गणितीय सूत्रा प्रदान किए। कुछ उदाहरणों में तो उनके हल काफी जटिल थे। उनका पाटीगणित एक विकसित गणितीय कृति के रूप में स्वीकृत है। इस पुस्तक के कुछ खंड में अंकगणितीय और ज्यामितीय श्रेढ़ियों का वर्णन है जिसमें भिन्नात्मक संख्याओं या पदों की श्रेणियां भी शामिल हैं तथा कुछ सीमित श्रेढ़ियांे के योग के सूत्रा भी हैं। गणितीय अनुसंधान की यह श्रंखला 10 वीं सदी में बनारस के विजय नंदी तक चली आई जिनकी कृति ’’करणतिलक’’ का अलबरूनी ने अरबी में अनुवाद किया था। महाराष्ट्र् के श्रीपति भी इस सदी के प्रमुख गणितज्ञों में से एक थे।

भास्कराचार्य 12 वीं सदी के भारतीय गणित के पथ प्रदर्शक थे जो गणितज्ञों की एक लम्बी परंपरा के उत्तराधिकारी थे और उज्जैन स्थित वेधशाला के मुखिया थे। उन्होंने लीलावती और बीजगणित जैसी गणित की पुस्तकों की रचना की तथा ’’सिद्धांत शिरोमणि’’ नामक ज्योतिषशास्त्रा की पुस्तक लिखी। सर्व प्रथम उन्होंने ही इस तथ्य की पहचान की कि कुछ द्विघात समीकरणों की ऐसी श्रेणी भी हंै जिनके दो हल संभव हैं। इनडिटर्मिनेट समीकरणों को हल करने के लिए उनकी चक्रवात विधि यूरोपीय विधियों से कई सदियों आगे थीं। अपने सिद्धांत शिरामणि में उन्होंने परिकल्पित किया कि पृथ्वी में गुरूत्वाकर्षण बल है। उन्होंने इनफाइनाइटसिमल गणनाओं और इंटीग्रेशन के क्षेत्रा में विवेचना की। इस पुस्तक के दूसरे भाग में गोलक और उसके गुणों के अध्ययन तथा भूगोल में उनके उपयोग, ग्रहीय औसत गतियां, ग्रहों के उत्केंद्रीय अधिचक्र नमूना, ग्रहों का प्रथम दर्शन, मौसम, चंद्रकला आदि विषयों पर कई अध्याय हैं। उन्हांेने ज्योतिषीय यंत्रों और गोलकीय त्रिकोणमिति की भी विवेचना की है।
भारतीय गणित का प्रसार

ऐसा लगता है कि इस्लामी हमलों की तीव्रता के बाद, जब महाविद्यालयों और विश्व विद्यालयों का स्थान मदरसों ने ले लिया तब गणित के अध्ययन की गति मंद पड़ गई। लेकिन यही समय था जब भारतीय गणित की पुस्तकें भारी संख्या में अरबी और फारसी भाषाओं में अनूदित हुईं। यद्यपि अरब विद्वान बेबीलोनीय, सीरियाई, ग्रीक और कुछ चीनी पुस्तकों सहित विविध स्त्रोतों पर निर्भर करते थे परंतु भारतीय गणित की पुस्तकों का योगदान विशेषरूप से महत्वपूर्ण था। 8 वीं सदी में बगदाद के इब्न तारिक और अल फजरी, 9 वीं सदी में बसरा के अल किंदी, 9 वीं सदी में ही खीवा के अल ख्वारिज्.मी, 9 वीं सदी में मगरिब के अल कायारवानी जो ’’किताबफी अल हिसाब अल हिंदी’’ के लेखक थे, 10 वीं सदी में दमिश्क के अल उक्लिदिसी जिन्होंने ’’भारतीय गणित के अध्याय’’ लिखी, इब्न सिना, 11 वीं सदी में ग्रेनेडा, स्पेन के इब्न अल सम्ह, 11 वीं सदी में खुरासान, फारस के अल नसावी, 11 वीं सदी में खीवा में जन्मे अल बरूनी जिनका देहांत अफगानिस्तान में हुआ, तेहरान के अल राजी, 11 वीं सदी में कोर्डोवा के इब्न अल सफ्फर ये कुछ नाम हैं जिनकी वैज्ञानिक पुस्तकों का आधार अनूदित भारतीय ग्रंथ थे। कई प्रमाणों, अवधारणाओं और सूत्रों के भारतीय स्त्रोत् के होने के अभिलेख परवर्ती सदियों में धूमिल पड़ गए लेकिन भारतीय गणित की शानदार अतिशय देन को कई मशहूर अरबी और फारसी विद्वानों ने मुक्त कंठ से स्वीकार किया है, विशेष रूप से स्पेन में। अब्बासी विद्वान अल गहेथ ने लिखाः ’’भारत ज्ञान, विचार और अनुभूतियों का स्त्रोत है।’’ 956 ई में अल मौदूदी ने जिसने पश्चिमी भारत का भ्रमण किया था, भारतीय विज्ञान की महत्ता के बारे में लिखा था। सईद अल अंदलूसी, 11 वीं सदी का स्पेन का विद्वान और दरबारी इतिहासकार, भारतीय सभ्यता की जमकर तारीफ करने वालों में से एक था और उसने विज्ञान और गणित में भारत की उपलब्धियों पर विशेष टिप्पणी की थी। अंततः भारतीय बीजगणित और त्रिकोणमिति अनुवाद के एक चक्र से गुजरकर अरब दुनिया से स्पेन और सिसली पहुंची और वहां से सारे यूरोप में प्रविष्ट हुई। उसी समय ग्रीस और मिश्र की वैज्ञानिक कृतियों के अरबी और फारसी अनुवाद भारत में सुगमता से उपलब्ध हो गये।

केरल के स्कूल

यद्यपि ऐसा लगता है कि इस्लामी फतह के बाद उत्तरी भारत के अधिकांश भागों मेें गणित में मौलिक कार्य रुक गये, बनारस गणित अध्ययन केंद्र के रूप में बचा रहा और केरल में गणित का एक महत्वपूर्ण स्कूल पल्लवित हुआ। 14 वीं सदी में कोच्चि में माधव ने गणित में महत्वपूर्ण अनुसंधान किए जिसे यूरोपीय गणितज्ञ कम से कम दो सदियों बाद ही जान पाये। उनके ज्या और कोज्या फलन के श्रेढी विस्तारण को जानने में न्यूटन को इसके बाद 300 वर्ष और लगे थे। गणित के इतिहासकार राजगोपाल, रंगाचारी और जोसेफ का मानना है कि गणित में उनकी देन इसे अगले सोपान पर – आधुनिक शास्त्राीय विश्लेषण पर – ले जाने में बहुत सहायक थी। 15 वीं सदी में तिरूर, केरल के नीलकंठ ने माधव द्वारा प्राप्त परिणामों को विस्तृत किया और व्याख्या की। 16 वीं सदी में केरल के ज्येष्ठदेव ने माधव और नीलकंठ की कृतियों में शामिल प्रमेयों के विस्तृत प्रमाण और नियमों के डेरिवेशन्स दिये। यह भी ध्यान देने योग्य है कि ज्येष्ठदेव की पुस्तक ’’युक्तिभास’’ में नीलकंठ की पुस्तक ’’तंत्रा संग्रह’’ पर टिप्पणियां तो हैं ही इसके अलावा उसमें ग्रहीय सिद्धांत की भी व्याख्या है जिसे टाइको व्राहे ने बहुत बाद में अपनाया; इसके अलावा परवर्ती यूरोपीय विद्वानों द्वारा कल्पित गणित की भी उन्होंने पूर्व में व्याख्या की थी। चित्राभानु, 16 वीं सदी, केरल ने परिणाम हासिल करने के लिए बीजगणितीय और ज्यामितीय दोनों रीतियों का प्रयोग किया और इसके द्वारा दो बीजगणितीय समीकरणों की 21 प्रकार की प्रणालियों के राशि हल दिए। केरल के गणितज्ञों द्वारा किए गए महत्वपूर्ण अनुसंधानों में न्यूटन-गाॅस का प्रक्षेप सूत्रा, एक असीम श्रेणी के योगफल का सूत्रा और पाइ का मान एक श्रेढ़ी के रूप में भी शामिल हैं। चाल्र्स व्हिश 1835 में ’’ट्र्ांसैक्शन्स आफ दी राॅयल एशियाटिक सोसायटी आॅफ ग्रेट ब्रिटेन एण्ड आयरलैंड’’ मेें प्रकाशित उन प्रथम पश्चिमी विद्वानों में से एक थे जिन्होंने इस तथ्य को स्वीकार किया कि इस क्षेत्रा में हुए यूरोपीय विकास को केरल स्कूल ने 300 वर्ष पहले ही कल्पित कर लिया था।

फिर भी गणित के इतिहास पर तैयार बहुत कम संक्षिप्त सारों ने भारतीय गणित के बहुधा मार्ग दर्शक और क्रांतिकारी अवदानों पर समुचित ध्यान दिया गया। लेकिन यह लेख यह सिद्ध करने के लिए पर्याप्त है कि भारतीय उपमहाद्वीप में गणितीय गवेषणा का महत्वपूर्ण भाग उत्पन्न हुआ। गणित विज्ञान न केवल औद्योगिक का्रंति का बल्कि परवर्ती काल में हुईं वैज्ञानिक उन्नति का भी केंद्र बिन्दु रहा है। बिना गणित के विज्ञान की कोई भी शाखा पूर्ण नहीं हो सकती। भारत ने औद्योगिक क्रांति के लिए न केवल आर्थिक पंूजी प्रदान की /देखें उपनिवेशीकरण पर लेख/ वरन् विज्ञान की नींव के जीवंत तत्व भी प्रदान किये जिसके बिना मानवता विज्ञान और उच्च तकनीकी के इस आधुनिक दौर में प्रवेश नहीं कर पाती।

टिप्पणियांः

गणित और संगीतः पिंगल ने 300 सदी में चंदसूत्रा नामक गं्रथ की रचना की थी। उनने काम्बीनेटरीज और संगीत सिद्धांत के परस्पर संबंध की परीक्षा की जो मर्सिन, 1588-1648, द्वारा संगीत सिद्धांत पर रचित एक महत्वपूर्ण ग्रंथ का अग्रदूत है।

गणित और वास्तुशिल्पः अंकगणितीय और ज्यामितीय श्रेणियों में रुचि उत्पन्न होने का कारण भारतीय वास्तु के डिजाइन जैसे मंदिर शिखर, गोपुरम और मंदिरों की भीतरी छत की टेक हैं। वास्तव में ज्यामिति और वास्तु साजसज्जा का परस्पर संबंध उच्चतम स्तर पर विकसित हुआ था मुस्लिम शासकों द्वारा पोषित विभिन्न स्मारकों के निर्माण में जो मध्य एशिया, फारस, तुर्की, अरब और भारत के वास्तुशिल्पियों द्वारा निर्मित किये गए थे।

भारतीय अंक प्रणाली का प्रसारः भारतीय अंक प्रणाली के पश्चिम में प्रसार के प्रमाण ’’क्रेस्ट आॅफ पीकाॅक’’ के लेखक जोसेफ द्वारा इस प्रकार दिये गए हैंः-
सेबेरस सिबोख्त, 662 ई. ने एक सीरियाई पुस्तक में भारतीय ज्योतिर्विदों के ’’गूढ़ अनुसंधानों’’ का वर्णन करते हुए उन्हें ’’यूनानी और बेबीलानियन ज्योतिर्विदों की अपेक्षा अधिक प्रवीण’’ और ’’संगणना के उनके बहुमूल्य तरीकों को वर्णनातीत’’ बताया है और उसके बाद उसने उनकी नौ अंकों की प्रणाली के प्रयोग की चर्चा की है।
फिबोनाक्सी, 1170-1250, की पुस्तक ’’लिबर एबासी’’, एबाकस की पुस्तक, से उद्धतः नौ भारतीय अंक ….. हैं। इन नौ अंकों तथा 0 जिसे अरबी में सिफर कहते हैं से कोई भी अभीष्ट संख्या लिखी जा सकती है। /फिबोनाक्सी ने भारतीय अंकों के बारे में ज्ञान, उत्तरी अफ्रीका के अपने अरब अध्यापकों से प्राप्त किया था।

केरल स्कूल का प्रभावः ’’के्रस्ट आॅफ पीकाॅक’’ के लेखक जोसेफ कहते हैं कि गणित की भारतीय पांडुलिपियां यूरोप में संभवतया जेसुइट पादरियांे द्वारा लाई गई जैसे कि मात्तिओ रिक्सी जिसने 1580 में चर्च द्वारा निर्देश प्राप्त होने के बाद गोआ से कोचीन जाकर वहां दो साल बिताये। कोचीन त्रिचूर से केवल 70 किमी दूर स्थित है। त्रिचूर उस समय ज्योतिर्विद्या के अभिलेखों का सबसे बड़ा संग्रहालय था। व्हिश और हाइन, दो यूरोपीय गणितज्ञों ने त्रिचूर के केरलीय गणितज्ञों की कृतियों की नकल प्राप्त की थी और यह बड़ा स्वाभाविक लगता है कि जेसुइट पादरियों ने इन कृतियों की नकल पीसा या पदाउ या पेरिस में पहुंचाई। पीसा में गैलिलियो, कैवेलियरी और वालिस, पदाउ में जेम्स ग्रेगरी और पेरिस में मरसेन जो फरमैट और पास्कल के संपर्क में थे, इन गणितीय अवधारणाओं के प्रसार के अभिकर्ता बने।

संदर्भः-

भारत में विज्ञान के इतिहास का अध्ययन – देवी प्रसाद चट्टोपाध्याय द्वारा संपादित चयनिका।
गणित के इतिहास का अध्ययन -ए. पी. जुस्केविक, एस. एस. डेमिदोव, एफ. ए. मेडविदोव और इ. आइ. स्लाव्युतिन, ’’नावका’’ मास्को 1974।
सुल्ब का विज्ञान – बी. दत्त, कलकत्ता, 1932।
गणित के इतिहास का अध्ययन -ए. पी. जुस्केविक, एस. एस. डेमिदोव, एफ. ए. मेडविदोव और इ. आइ. स्लाव्युतिन, ’’नावका’’ मास्को 1974।
सुल्ब का विज्ञान – बी. दत्त, कलकत्ता, 1932।दी के्रस्ट आॅफ द पीकाॅक – जी. जी. जोसेफ, प्रिंस्टन यूनिवर्सिटी प्रेस, 2000। पाइ का ज्ञान सुल्ब सूत्राकारों को ज्ञात था – आर. पी. कुलकर्णी, इंडियन जर्नल हिस्ट्र्ी सांइस, 13 1 1978, 32-41।
आर्यभट से पूर्ववर्ती बीजगणित के कुछ महत्वपूर्ण परिणाम – जी. कुमारी, मैथ. एड., सिवान, 14 1 1980, बी 5 से बी 13।
अंकों का एक सार्वभौमिक इतिहासः पूर्व ऐतिहासिक काल से कम्प्यूटर के अविष्कार तक – जी. इफरा, लंदन, 1998।
पाणिनि.बैकस फार्म – पी. जेड़. इंगरमैन, कम्युनिकेशन्स आॅफ दी एसीएम, 10 3 1967, 137।
ज्योतिष और गणित में जैनों का योगदान – मैथ. एड., सिवान, 18 3 1984, 98-107।
जैन गणित में पहली अगणनीय संख्या – आर. सी. गुप्त, गणित भारती 14 1-4 1992, 11-24।
गणित के जैन स्कूल में सिस्टम थ्योरी – एल. सी. जैन, इंडियन जर्नल हिस्ट्र्ी सोसायटी 14 1 1979, 31-65।
गणित के जैन स्कूल में सिस्टम थ्योरी – एल. सी. जैन और कु. मीना जैन, इंडियन जर्नल हिस्ट्र्ी सोसायटी, 24 3 1989, 163-180।
भास्कर प्रथम, भास्कर प्रथम और उनकी कृतियां भाग 2 – के. शंकर शुक्ल, महाभास्करीय, संस्कृत, लखनउ, 1960।
भास्कर प्रथम, भास्कर प्रथम और उनकी कृतियां भाग 3 – के. शंकर शुक्ल, महाभास्करीय, संस्कृत, लखनउ, 1963।
सातवीं सदी में हिंदू गणित, आर्यभटीय पर भास्कर प्रथम की समीक्षा से – के. शंकर शुक्ल, गणित 22 1 1971, 115-130।
बाराहमिहिर द्वारा द ब्त की गणना और पास्कल के त्रिभुज की खोज – आर. सी. गुप्त, गणित भारती 14 1-4 1992, 45.49।
परिमेय त्रिभुजों और चतुर्भुजों पर महावीर के हल पर – बी. दत्त, बुलेटिन कलकत्ता, मैथ्स सोसायटी, 20 1932, 267-294।
महावीर के गणित सार संग्रह पर, लगभग 850 ई. – बी. एस. जैन, इंडियन जर्नल हिस्ट्र्ी सोसायटी, 12 1 1977, 17-32।
श्रीधराचार्य का पाटीगणित – के. शंकर शुक्ल, लखनउ, 1959।मैथेमैटिकर – एच. सुटेर।दी मैथेमैटिकर एण्ड एस्ट्र्ोनोमेन दर अरेबर – सुटेर।
दी फिलोसोफिश्चेन अमन्दलुंजन दे एल खिंदी, मुंस्टर, 1897।
हिंदू ज्योतिर्विद्या के केरलीय स्कूल का इतिहास – के. वी. शर्मा, होशियारपुर, 1972।
माधव ग्रेगरी श्रेढ़ी, गणित शिक्षा – आर. सी. गुप्त, 7 1973, बी 63-बी 70।माधवः एनालेसिस का प्रणेता – एस. परमेश्वरन, गणित भारती, 18 1-4 1996, 67-70।
ज्येष्ठदेव का युक्तिभासः भारतीय गणित और ज्योतिर्विज्ञान में परिमेय पर एक ग्रंथ, एक विश्लेषणात्मक मूल्यांकन – के. बी. शर्मा और एस. हरिहरन, इंडियन जर्नल हिस्ट्र्ी सोसायटी, 26 2 1991, 185-207।
मध्यकालीन केरलीय गणित का एक अछूता स्त्रोत् – सी. टी. राजगोपाल और एम. एस. रंगाचारी, आर्क. हिस्ट्र्ी एक्जेक्ट साइंस 18 1978, 89-102।
मध्यकालीन केरलीय गणित – सी. टी. राजगोपाल और एम. एस. रंगाचारी, आर्क. हिस्ट्र्ी एक्जेक्ट साइंस, 35 1986, 91-99।
प्राचीन और मध्य कालीन भारत में गणित – ए. के. बाग, वाराणसी, 1979।
भारत में विज्ञान का संक्षिप्त इतिहास – बोस, सेन, सुबारायप्पा, इंडियन नेशनल साइंस एकादमी।
प्राचीन और मध्य कालीन भारत में ज्यामिति – टी. ए. सरस्वती, 1979, दिल्ली।
प्राचीन भारत में तर्क शास्त्रा की बुनियाद, भाषा शास्त्रा और गणित – एन. सिंह, भारतीय संस्कृति में विज्ञान और तकनीकी, संपादकः ए. रहमान, 1984, नई दिल्ली।
प्राचीन और मध्य कालीन भारत में तथा कथित फिबोनाक्सी संख्याएं – पी. सिंह, हिस्टोरिका मैथमैटिका, 12, 229-44, 1985।
भारत और चीनः विज्ञान विनिमय, भारत में विज्ञान का इतिहास भाग 2 – चिन केहम्यू।

भारतीय गणितः एक अन्य दृष्टिकोण

भारत और वैज्ञानिक क्रांति में डेविड ग्रे लिखते हैंः ’’पश्चिम में गणित का अध्ययन लम्बे समय से कुछ हद तक राष्ट्र् केंद्रित पूर्वाग्रह से प्रभावित रहा है, एक ऐसा पूर्वाग्रह जो प्रायः बड़बोले जातिवाद के रूप में नहीं बल्कि गैरपश्चिमी सभ्यताओं के वास्तविक योगदान को नकारने या मिटाने के प्रयास के रूप में परिलक्षित होता है। पश्चिम अन्य सभ्यताओं विशेषकर भारत का ऋणी रहा है। और यह ऋण ’’पश्चिमी’’ वैज्ञानिक परंपरा के प्राचीनतम काल – ग्रीक सम्यता के युग से प्रारंभ होकर आधुनिक काल के प्रारंभ, पुनरुत्थान काल तक जारी रहा है – जब यूरोप अपने अंध युग से जाग रहा था।’’

इसके बाद डा. ग्रे भारत में घटित गणित के सर्वाधिक महत्वपूर्ण विकसित उपलब्धियों की सूची बनाते हुए भारतीय गणित के चमकते सितारों जैसे आर्यभट, ब्रह्मगुप्त, महावीर, भास्कर और माधव के योगदानों का संक्षेप में वर्णन करते हैं। अंत में वे जोर देकर कहते हैं‘ ’’यूरोप में वैज्ञानिक क्रांति के विकास में भारत का योगदान केवल हासिये पर लिखी जाने वाली टिप्पणी नहीं है जिसे आसानी से और अतार्किक तौर पर यूरोप कंेद्रित पूर्वाग्रह के आडम्बर में छिपा दिया गया है। ऐसा करना इतिहास को विकृत करना है और वैश्विक सभ्यता में भारत के महानतम योगदान को नकारना है।’’

Advertisements